
Wendy Chen 
CPSC 424 

5/11/16 
Final Project: GPU Raytracer 

 
Problem Description 
 In raytracing, a 2D image is produced as output from a 3D input scene.  Light 
behavior is simulated by shooting rays from the camera to all areas of the scene, and then 
checking if these rays hit any objects or light sources.  The color returned to each pixel is 
an average of the number of rays used to sample the scene. 
 A number of bottlenecks on the speed of raytracing exist.  First, each ray casted 
must iterate through the entire list of scene objects to check for intersections.  A scene 
that is heavy geometrically (ie. Ten thousands of triangles) will be highly inefficient in 
render time if no acceleration data structures are used to help with search through space.  
Next, another major bottleneck is the number of pixels in the image and the number of 
rays sampled at each pixel.  We want to sample a number of jittered rays at each pixel for 
anti-aliasing; however, the more rays we sample, the longer the render time.  
Additionally, for a higher resolution image, we need to render an image with more pixels, 
which will also lengthen the render time. 
 In this project, I will address parallelizing the pixel sampling process.  In a serial 
program, the program moves from pixel to pixel to render the image.  In this project, I 
will parallelize the process by assigning one pixel to each thread.  Thus, with all threads 
running at the same time, all pixels should finish rendering in the time it takes a serial 
code to render one pixel.   
 I have limited the scope of this project to parallelizing only the rendering of pixels 
to achieve speedup.  Adding an acceleration data structure or parallelizing ray sampling 
would provide significant additional speedup.  I leave those two problems as areas of 
further work. 
 
Parallelization Approach 
 As discussed before, my parallelization approach was to assign each pixel to each 
thread.  The serial version of the code naively steps through pixels one at a time, going 
across each row until completion.  For an image of size n by m, the serial code would 
take O(nm) time to step through all pixels. 
 In my parallelization approach, I utilize CUDA to access the NVIDIA GPU on 
my Mac.  I initialize the grid to be the same dimensions as the size of the desired image.  
Then, the call to the kernel assigns each thread to the appropriate pixel, according to 
which row and column the thread resides on. 
 In order to render the pixel, each thread also needs to know the scene information.  
In the serial program, the scene was loaded into global memory once.  By contrast, my 
parallelization approach requires that each thread load the scene and then perform 
raytracing for just one pixel.  Each thread can safely write the resulting color into a 
globally shared array, which is then sent back to the host and then reassembled as an 
image. 
 
Code Description 
 In this project, I wrote both a serial C code and a parallelized C code that runs 
with CUDA.  I refactored the serial code from a JavaScript raytracer project from last 
semester (http://vverovvero.github.io/CPSC-290-index/).  I preserved the code logic 



  Chen 2  

while making the structures compatible with C.  The main data structures of the program 
were structs that held scene information and an image array that held floating values for 
(R,G,B).  The scene struct contained pointers to lists of all camera structs, light structs, 
material structs, and object structs.  Object structs were either sphere structs or triangle 
structs.  
 The program logic goes as follows: for each pixel, shoot a sample of rays into the 
scene.  (In my program, I shoot nine rays for anti-aliasing purposes).  Each ray casted 
into the scene will then check for intersection with an object.  If no object is hit, then the 
color black is returned.  If an object is hit, then I check if the object is visible from a light 
source, and determine what color the ray is seeing.  Light bounces are bounded at a depth 
of three.  After all nine samples return, the values are compounded into a single pixel.  A 
tone mapping function is called when all pixels have returned, in order to ensure that all 
(R,G,B) values fall between 0 and 255. 
 Lastly, the image data is written to a png format using the Cairo library. 
(https://www.cairographics.org/)  
 The code structure of the parallelized raytracer remains faithful to the structure of 
the serial raytracer.  The main difference is that the render function does not need to step 
through each pixel.  Instead, the render function determines what the row and column 
numbers of its thread are, and then the function assigns the pixel of the same row and 
column numbers to that thread. 
 
Results 
 I used both my serial and parallel programs to render an image of two spheres 
sitting in a Cornell box.  With only twelve objects total, the scene is not geometrically 
complex, which is acceptable since I am only looking to test speed up in rendering a 
pixel, not speedup due to accelerating search through space (by using a data structure like 
a k-d tree, for example).  Thus, the following results show render times returned by the 
serial and parallel programs for the same image, increasing only the number of pixels. 
 
Table 1. Serial and Parallel Render Times for Static Scene of Increasing Resolution 

Width 
(Pixels) 

Height (Pixels) Serial Time 
(milliseconds) 

Parallel Time 
(milliseconds) 

Speedup 
Factor 

256 256 5219.02124 3400.354736 1.53484611 
512 512 21529.23389 10011.75977 2.150394575 
 

Table 2. Serial Render Times for Static Scene of Increasing Resolution 
Width (Pixels) Height (Pixels) Serial Time 

(milliseconds) 
256 256 5219.02124 
512 512 21529.23389 
1024 1024 86540.99194 
2048 2048 342839.0981 
4096 4096 1308778.755 

 



  Chen 3  

Below is the rendered image of the static scene used, shown at a resolution of 512 by 512 
pixels: 
 

Image 1. Two Spheres in a Cornell Box 

 
 
 As observed, the parallel code was able to render the image in about half the time 
that the serial code could.  The observed speedup was less than the hypothetical time of 
rendering all pixels in parallel in the time of rending one pixel serially.  The discrepancy 
is likely due to the overhead of starting up CUDA and transferring data between the CPU 
and GPU memory.   
 Additionally, my parallel program was unfortunately unable to render images at 
resolution 1024 by 1024 and above.  This size limitation is likely due to the limit of the 
thread stack size on my GPU.  While I tried changing the stack size, at a certain point, the 
program became constrained by hardware limitations.   



  Chen 4  

 The fact that my parallel code would have required more memory than available 
on the stack is due to possibly two reasons.  One, because of the design of the serial code, 
the easiest way to modify the code for running in parallel was to have each thread copy 
the scene into its memory.  Each thread making a copy of the scene is highly redundant 
and wastes memory.  Two, because the original JavaScript code was written recursively, 
my refactored serial and parallel C programs were both recursive as well.  CUDA does 
not seem to support recursion well, as the use of recursion makes CUDA unable to 
determine how much space to allocate for the stack. 
 
Conclusions & Further Work 
 As evidenced, while my parallel program achieved speedup in render time, there 
still remain areas for improvement.  The most obvious area would be to reduce the strain 
on memory.  The parallel program should store the scene information in either shared or 
global memory in order to prevent each thread from needing a copy of the scene on each 
thread stack.  Additionally, the recursion in the program could be changed to iteration.  
By removing recursion, CUDA would also be able to determine how much space to 
allocate for the stack. 
 Another area to parallelize would be ray sampling per pixel.  Currently, each 
thread performs all samples per pixel.  In my current implementation, nine ray samples 
are used to generate the color of a pixel.  This process could be parallelized by having 
each thread simulate the casting of one ray, and then combining the results of nine 
threads to get the color information for one pixel.  
 Lastly, an area to improve would be the data structure used to store the scene.  
Last semester, I implemented a k-d tree that helps make searching through objects in a 
scene more efficient by grouping objects into appropriate bounding boxes.  I did not 
implement any spatial acceleration data structures in this C program, since spatial 
acceleration data structures are not related to parallelization of the raytracing problem, 
although they would improve performance. 
 
Notes: Running the Code 
 I have attached the code in a zip file.  Inside the zip file, there is a serial C 
program, a parallel C program, and a sample image of what the scene should be rendered 
as.  The code was written to run on Mac.  The user must also have the Cairo graphics 
library installed to run the code.  To run the parallel code, the user must have an NVIDIA 
graphics card. 
 Inside both codes are #define statements that set the height and width resolution.  
The user can change these values, so long as they remain factors of 32 (to stay consistent 
with the block size used in the parallel code). 
 To make and run the serial program, use the following commands: 
gcc  -‐std=c99  -‐o  main  -‐L/usr/local/lib/cairo/  -‐lcairo  main.c  -‐
I/usr/local/include/cairo/  
./main  
   To make and run the parallel program, use the following commands: 
make  
./main  
 


