
CPSC 290 Final Report: Raytracer Modifications 
 

Wendy Chen 
CPSC 290, Fall 2015 

Advising Professor: Holly Rushmeier 
 

 
Introduction 
 

The focus of this CPSC 290 project was to add further modifications to a raytracer 
base, namely, to implement an acceleration structure.  I chose to implement a hierarchal 
axis-aligned bounding box system, partitioning space using a k-d tree.   

The raytracer base I started with was taken from Tom MacWright’s open source 
literate raytracer and modified by Professor Rushmeier (References, 1).  This raytracer 
was able to handle simple scenes composed of spheres and triangles, area light sources, 
and lambertian and diffuse shading.  In a homework assignment for CPSC 478, I further 
modified the raytracer to handle more light sources and specular shading for shiny, 
metallic materials.  For my CPSC 290 project, in order to build geometrically interesting 
scenes to test my accelerated raytracer on, I also wrote a Python parsing script to import 
OBJ files into my raytracer.  Additionally, I implemented ray refraction in order to 
support rendering glass materials.   
 
Implementation 
 

The unaccelerated raytracer shoots a ray through each pixel and iterates through 
all objects in the scene, checking for the closest object intersected by the ray.  However, 
each pixel does not necessarily contain an object, and complicated scenes can contain 
thousands of objects, so the process of iterating through all objects per pixel becomes 
slow very quickly.  To accelerate the process, we would like to reduce how many 
intersections between the ray and objects we check for at each pixel.  By subdividing the 
space into bounding boxes, we can assign an appropriate list of objects found in each 
bounding box.  Thus, for each ray shot through each pixel, we first traverse the bounding 
boxes and check if they contain objects.  If the bounding box intersected by the ray 
doesn’t contain any objects, we can quickly move on to the next pixel.  If the bounding 
box does contain objects, we can check the list of objects contained in the bounding box 
instead of the list of objects contained in the entire scene. 

To accelerate the raytracer, I implemented a k-d tree to subdivide the space into 
bounding boxes.  A k-d tree is a special type of binary tree used for partitioning k-
dimensional space (in this case, 3D space).  Each node of my k-d tree contained the 
bounds of the box, stored as two minimum and maximum (x, y, z) triples.  Each node 
also contained a list of scene objects that could be found in each box, a split point and a 
split axis, the node’s depth, and pointers to the left and right children.   

To populate the tree, each non-leaf node generates a split point by averaging its 
minimum and maximum bounds.  The longest axis of each bounding box is chosen as its 
split axis for generating its left and right child.  Points to the left of the split axis cascade 
into the left-child bounding box, and points to the right of the split axis cascade into the 
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right-child bounding box.  Subdivisions stop when a bounding box either contains less 
than ten objects or when the node has reached a maximum depth of 50. 

At each split, the code needs to determine what objects are now contained in the 
newly made bounding boxes.  To determine whether a sphere object should belong to a 
bounding box, my code calculates an intersection by approximating the bounding box as 
a sphere, and then comparing the distance between the box’s center and the sphere 
object’s center with the sum of radii.  To determine whether a triangle object should 
belong to a bounding box, I used code refactored from Tomas Akenine-Möller’s 
publication on triangle-box overlap tests (References, 2). 

Thus, before rendering, my raytracer uses the scheme described above to 
preprocess the scene’s geometry and construct a k-d tree. 

Before modification, the code that checked for scene intersections would take a 
ray and a list of objects in the scene as input, check for intersections between objects and 
the ray, and return the closest object with its distance.  To accelerate the code, I built 
helper functions that allowed a shorter list of objects to be generated as input by 
traversing the k-d tree.  The modified code that checks for scene intersections traverses 
the k-d tree and checks for intersections at each box.  If the ray hits a bounding box, then 
the objects contained within the box are added to the list of objects to check for 
intersections with.  After all boxes along the ray’s path are checked and the list of objects 
is generated, then the code checks for intersections between the ray and the shorter list of 
objects. 

To check for intersections between a ray and a bounding box, I refactored code 
from ScratchPixel’s ray-box intersection implementation (References, 3).  If there is a 
hit, then the list of objects contained at the node are simply copied into a running list of 
objects to check.  After traversing the tree, this list of objects is then passed on to the 
original function that checks for intersections between rays and objects. 

While implementing an acceleration structure was the main focus of this project, I 
also decided to implement ray refraction because glass materials create interesting light 
paths and are pretty to look at.  I calculated the refraction vector of a ray by following the 
geometric construction in a lecture posted by Ohio State’s CSE 681 (References, 4), and 
I calculated the color contribution of the reflection and refraction rays by following 
ScratchPixel’s algorithm (References, 5).  Thus, my raytracer is able to create the 
refracted reflections one would expect to find in glass materials.  However, my modified 
code does not account for caustics, so the shadows remain opaque. 

To import complex geometries, I wrote a Python script to parse OBJ files into an 
array of vertices and an array of triangle indices.  Because various OBJ’s have different 
formats, I first imported OBJ files into Blender, and then re-exported the OBJ files in 
order to get a consistent file format across all my test scenes.  I packaged the results of 
the Python parser into Javascript files that I then loaded into my scenes.  The OBJ files I 
have used in this project were taken from Florida State University and Stanford 
University (References, 6, 7). 
 
Speculative Times 
 

! k-d tree build time should be O(n log n), where n represents number of objects in 
the scene.  Since subdividing the space and putting objects into bounding boxes is 
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essentially a sort, the predicted time should be the similar to a merge sort or the 
like. 

! Unaccelerated render time should be O(mn), where m represents number of pixels 
in the image, and n represents number of objects in the scene.  Since the code has 
to iterate through the entire list of objects in the scene per pixel, the predicted time 
should be roughly quadratic. 

! Accelerated render times should be O(mdt), where m represents the nmber of 
pixels in the image, d represents the maximum number of steps to traverse the k-d 
tree, and t represents the maximum number of objects at each leaf node.  The 
predicted times only factor in caps for d and t since implementation of a k-d tree 
was constrained by a maximum depth and a threshold for number of objects.  
However, the accelerated time O(mdt) will still be faster than O(mn) because 
while n has no bound, d and t are bound to a small number by my program. 

 
Results 
 

In order to determine if my modified code actually delivered acceleration, I 
recorded the render times of the accelerated raytracer and the original unaccelerated 
raytracer for five sample scenes.  In the case of the unaccelerated raytracer, I extrapolated 
three of the render times from the first two, because the unaccelerated raytracer should 
slow down linearly in proportion to how much geometry is in the scene.  Originally, I 
tried to record the actual unaccelerated render times for the bunny, dragon, and Buddha 
scenes, but after eight hours, I killed the renders. 

Below are figures showing the five sample scenes, and tables containing 
information about render times: 
 

Figure 1. Five Sample Scenes 
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Figure 2. Accelerated Render Times 
 

Scene Max depth # Objects k-d tree time 
(milliseconds) 

Render time 
(milliseconds) 

Machine used 

humanoid 50 106 95 37111 my laptop, chrome 
teddy bear 50 3203 1689 39214 my laptop, chrome 
bunny 50 69676 4626 49899 my laptop, chrome 
buddha 50 100010 12248 146700 my laptop, chrome 
dragon 50 100016 10877 139151 my laptop, chrome 

 
 
 

Figure 3. Unaccelerated Render Times 
 

Scene # objects Render time 
(milliseconds) 

Machine used 

humanoid 106 79000 my laptop, chrome 
teddy bear 3203 2180710 my laptop, chrome 
bunny 69676 51928339.62 LINEAR EXTRAPOLATION 
buddha 100010 74535754.72 LINEAR EXTRAPOLATION 
dragon 100016 74540226.42 LINEAR EXTRAPOLATION 

 
 

From left to right, top to down, 
the scenes are: humanoid, teddy 
bear, bunny, Buddha, dragon. 
 
Each of these scenes was 
rendered at 320 pixels in width, 
240 pixels in height. 
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Figure 4. Observed Speed-up for Entire Scene 
 

Scene Ratio (unaccelerated time: accelerated time)  
humanoid 2.128748888 
teddy bear 55.61049625 
bunny 1040.668944 
buddha 508.0828542 
dragon 535.6786974 

 
 

Figure 5. Observed Speed-up per Object 
 

Scene # objects (Unaccelerated/Accelerated)/#objects 
humanoid 106 0.020082537 
teddy bear 3203 0.017362003 
bunny 69676 0.014935831 
buddha 100010 0.005080321 
dragon 100016 0.00535593 

 
 

Figure 6. Graph of k-d tree build times from Figure 2 
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Figure 7. Graph of Accelerated Render Times from Figure 2 
 

 
 

Figure 8. Graph of Unaccelerated Render Times from Figure 3 
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Figure 9. Graph of Accelerated & Unaccelerated Render Times 
 

 
 
 As evidenced by the graphs, the acceleration structure did work and provided 
significant speedups for complicated scenes.  However, the speedup factor falls off when 
rendering large scenes like the dragon or Buddha, which both have about 100,000 
triangles each.  The fall off in speedup is most likely due to the constraints placed on the 
size of the k-d trees.   
 
Difficulties & Further Work 
 
The main difficulties I encountered were: 

! Splitting:  To determine the split point for creating two children bounding boxes 
from one parent, I naively averaged the minimum and maximum bounds of the 
parent box.  However, a more efficient way to split the boxes would be to find the 
average midpoint of all the points contained within the box.  Finding this average 
midpoint is difficult due to the problem of picking which points to sample.  For 
example, if an object is only partially in the box, how should the points on the part 
of the object inside of the box be selected for midpoint averaging?  My original 
approach was to assign a midpoint to each object in the scene, and take the 
average of the midpoints of the objects that intersected each box.  This averaging 
approach fails if the assigned midpoint actually lies outside of the box.  For 
further work, I would write a smarter way to take the average of midpoints.  One 
idea is to assign a midpoint to each object in the scene, but throw out the midpoint 
if it lies outside of the bounding box even while the object intersects the bounding 
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box.  If all midpoints are thrown out, then naively return the average of the 
minimum and maximum bounds of the bounding box. 

! Thresholds:  To determine when the k-d tree should cease recursively populating 
itself, I originally set a threshold and a maximum depth.  If the length of the list of 
objects stored at a child node went below the threshold, or if the child’s depth hit 
the maximum depth, then the node would cease subdividing.  I set a maximum 
depth in order to prevent a stack overflow for memory; however, I realize that this 
constraint can reduce the amount of acceleration for geometry-heavy scenes.  For 
further work, I would replace the maximum depth constraint with a different 
condition, and I would rewrite the k-d tree population to be non-recursive. 

! Glass:  To determine the color at each pixel of glass, I created a reflection and 
refraction ray for each eye ray that intersected a glass object.  However, the 
shadows do not display any refracted light or caustics because I did not modify 
the way the code rendered shadows.  For further work, I would add another 
function that checks for intersections between rays and objects, but instead of 
checking for merely intersection, I would check if the intersected ray could pass 
through the object or not.  Additionally, I had some instances where the refraction 
ray color would return as NaN, inexplicably.  I could not find this bug, so I have 
temporarily patched it to return the color black instead. 

 
References 

1. The original literate raytracer (http://www.macwright.org/literate-raytracer/) was 
modified by Professor Rushmeier for CPSC 478 Assignment 6.  I used this 
modified raytracer as my starting base. 

2. This site (http://fileadmin.cs.lth.se/cs/Personal/Tomas_Akenine-Moller/code/) 
contains both the paper and the original C code for triangle-box intersection.  I 
refactored this code for my Javascript program. 

3. I refactored the code from this site (http://www.scratchapixel.com/lessons/3d-
basic-rendering/minimal-ray-tracer-rendering-simple-shapes/ray-box-intersection) 
for ray-box intersection. 

4. I followed the calculations described here (http://web.cse.ohio-
state.edu/~hwshen/681/Site/Slides_files/reflection_refraction.pdf) for determining 
the refraction ray. 

5. I followed the algorithm here (http://www.scratchapixel.com/lessons/3d-basic-
rendering/introduction-to-ray-tracing/ray-tracing-practical-example) for tracing 
both reflection and refraction rays for glass materials. 

6. I found the humanoid and teddy bear OBJ files from this site: 
http://people.sc.fsu.edu/~jburkardt/data/obj/obj.html 

7. I found the bunny, dragon, and Buddha OBJ files from this site: 
https://www.d.umn.edu/~ddunham/cs5721f07/schedule/resources/lab_opengl07.ht
ml 

 
 
Code Modifications 
 
List of files that I added or modified: 
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! acceleration.js – I created this file for the k-d tree acceleration code. 
! intersectScene.js – I modified this file for the traversal of the k-d tree. 
! scene-orig.js – I modified this file, adding complex geometries and initializing the 

k-d tree. 
! triangleBB.js – I refactored the triangle-bounding box intersection code. 
! surface.js – I modified this file to account for ray refraction for glass materials. 
! obj_[primitive].js – I created these OBJ files with the help of my Python parser. 

 
Additional Notes 

This project built off of previous knowledge gained from the CPSC 478 
homework assignments.  I will upload the completed assignments to the classesv2 
Dropbox.  

 
High-Res Pretty Pictures (for fun!): 960 pixels width, 720 pixels height 
 

 
Above: Happy Buddha, matte pink material 
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Above: Bunny, gold metallic material 
 
 

  
Left: Bunny, red glossy material    Right: Bunny, glass material (no caustics) 
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Above: Dragon, glass material (no caustics) 
  

 
Left: Dragon, glossy aquamarine    Right: Dragon, mirror material 


